Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Birth Defects Res ; 116(3): e2327, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456586

RESUMO

BACKGROUND: Split hand/foot malformation (SHFM) is a congenital limb disorder presenting with limb anomalies, such as missing, hypoplastic, or fused digits, and often craniofacial defects, including a cleft lip/palate, microdontia, micrognathia, or maxillary hypoplasia. We previously identified three novel variants in the transcription factor, PRDM1, that are associated with SHFM phenotypes. One individual also presented with a high arch palate. Studies in vertebrates indicate that PRDM1 is important for development of the skull; however, prior to our study, human variants in PRDM1 had not been associated with craniofacial anomalies. METHODS: Using transient mRNA overexpression assays in prdm1a-/- mutant zebrafish, we tested whether the PRDM1 SHFM variants were functional and could lead to a rescue of the craniofacial defects observed in prdm1a-/- mutants. We also mined previously published CUT&RUN and RNA-seq datasets that sorted EGFP-positive cells from a Tg(Mmu:Prx1-EGFP) transgenic line that labels the pectoral fin, pharyngeal arches, and dorsal part of the head to examine Prdm1a binding and the effect of Prdm1a loss on craniofacial genes. RESULTS: The prdm1a-/- mutants exhibit craniofacial defects including a hypoplastic neurocranium, a loss of posterior ceratobranchial arches, a shorter palatoquadrate, and an inverted ceratohyal. Injection of wildtype (WT) hPRDM1 in prdm1a-/- mutants partially rescues the palatoquadrate phenotype. However, injection of each of the three SHFM variants fails to rescue this skeletal defect. Loss of prdm1a leads to a decreased expression of important craniofacial genes by RNA-seq, including emilin3a, confirmed by hybridization chain reaction expression. Other genes including dlx5a/dlx6a, hand2, sox9b, col2a1a, and hoxb genes are also reduced. Validation by real-time quantitative PCR in the anterior half of zebrafish embryos failed to confirm the expression changes suggesting that the differences are enriched in prx1 expressing cells. CONCLUSION: These data suggest that the three SHFM variants are likely not functional and may be associated with the craniofacial defects observed in the humans. Finally, they demonstrate how Prdm1a can directly bind and regulate genes involved in craniofacial development.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Crânio , Síndrome , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Methods Mol Biol ; 2770: 87-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351448

RESUMO

Human primordial germ cell (PGC) development initiates about 2 weeks after fertilization during embryogenesis. Unique molecular events follow, including epigenetic resetting, to establish functional gametes (egg and sperm). Due to the inaccessibility of human embryos, it is essential to have an amenable experimental platform to investigate the mechanisms and potential dysfunctions of the events. We previously established a PGC-like cell (PGCLC) differentiation method using human pluripotent stem cells (PSCs) via induction of precursor cells followed by stimulation with a cytokine cocktail including BMP. We also revealed that the expression of PGC specifiers, SOX17 and PRDM1, can robustly induce PGCLCs from PSCs without the cytokines. The balance of SOX17 and PRDM1 is critical for germ cell fate since the two factors also regulate endoderm differentiation. Here we describe a detailed procedure for PGCLC differentiation with the balanced induction of SOX17 and PRDM1. The protocol can be used for PGC induction in other mammalian species exhibiting PGCs with SOX17 expression. Together, these studies will advance the understanding of germ cell biology and its applications in reproductive technology and medicine.


Assuntos
Células-Tronco Pluripotentes , Sêmen , Animais , Humanos , Masculino , Diferenciação Celular/fisiologia , Células Germinativas/metabolismo , Embrião de Mamíferos , Mamíferos , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo
3.
Nat Commun ; 14(1): 3928, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402742

RESUMO

Tissue-resident memory (TRM) CD8+ T cells are largely derived from recently activated effector T cells, but the mechanisms that control the extent of TRM differentiation within tissue microenvironments remain unresolved. Here, using an IFNγ-YFP reporter system to identify CD8+ T cells executing antigen-dependent effector functions, we define the transcriptional consequences and functional mechanisms controlled by TCR-signaling strength that occur within the skin during viral infection to promote TRM differentiation. TCR-signaling both enhances CXCR6-mediated migration and suppresses migration toward sphingosine-1-phosphate, indicating the programming of a 'chemotactic switch' following secondary antigen encounter within non-lymphoid tissues. Blimp1 was identified as the critical target of TCR re-stimulation that is necessary to establish this chemotactic switch and for TRM differentiation to efficiently occur. Collectively, our findings show that access to antigen presentation and strength of TCR-signaling required for Blimp1 expression establishes the chemotactic properties of effector CD8+ T cells to promote residency within non-lymphoid tissues.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Receptores de Antígenos de Linfócitos T , Pele , Viroses , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Pele/imunologia , Pele/virologia , Viroses/imunologia , Movimento Celular , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Receptores CXCR6/metabolismo
4.
Environ Toxicol ; 38(1): 146-158, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36181686

RESUMO

BACKGROUND: B lymphocyte-induced maturation protein 1 (Blimp1) is a risk allele for rheumatoid arthritis (RA), but its functional mechanism in RA remains to be further explored. METHODS: Flow cytometry was performed to detect CD4+ T cell differentiation. ELISA was used to measure inflammatory factor secretion. Lentivirus mediated Blimp1 overexpression vector (LV-Blimp1) or short hairpin RNA (sh-Blimp1) were used to infect CD4+ T cells stimulated by anti-CD28 and anti-CD3 mAbs. RA fibroblast-like synoviocytes (FLSs) were co-cultured with CD4+ T cells or T cell conditioned medium (CD4CM), and cell proliferation, invasion, and expression of adhesion molecules and cytokines in FLSs were evaluated. Mice were injected intradermally with type II collagen to establish a collagen-induced arthritis (CIA) mouse model, and the severity of CIA was evaluated with H&E and Safranin-O staining. RESULTS: Blimp1 knockdown increased pro-inflammatory factor secretion, but downregulated IL-10 concentration in activated CD4+ T cells. Blimp1 overexpression promoted regulatory T cells (Treg) CD4+ T cell differentiation and hindered T helper 1 (Th1) and T helper 17 (Th17) CD4+ T cell differentiation. Blimp1 overexpression suppressed the expression of pro-inflammatory factors and adhesion molecules in CD4+ T cells by upregulating IL-10. Moreover, Blimp1 overexpression impeded the enhanced effect of CD4+ T cells/CD4CM on cell adhesion, inflammation, proliferation, invasion and RhoA and Rac1 activities in FLSs by upregulating IL-10. Additionally, administration with LV-Blimp1 alleviated the severity of CIA. CONCLUSION: Blimp1 restrained CD4+ T cells-induced activation of FLSs by promoting the secretion of IL-10 in CD4+ T cells via the Rho signaling pathway.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Animais , Camundongos , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Fibroblastos , Interleucina-10/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Sinoviócitos/metabolismo , Linfócitos T/metabolismo
5.
Nat Commun ; 13(1): 7677, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509766

RESUMO

Programmed death receptor-1 (PD-1) blockade have achieved some efficacy but only in a fraction of patients with hepatocellular carcinoma (HCC). Programmed cell death 1 ligand 1 (PD-L1) binds to its receptor PD1 on T cells to dampen antigen-tumor immune responses. However, the mechanisms underlying PD-L1 regulation are not fully elucidated. Herein, we identify that tumoral Prdm1 overexpression inhibits cell growth in immune-deficient mouse models. Further, tumoral Prdm1 overexpression upregulates PD-L1 levels, dampening anti-tumor immunity in vivo, and neutralizes the anti-tumor efficacy of Prdm1 overexpression in immune-competent mouse models. Mechanistically, PRDM1 enhances USP22 transcription, thus reducing SPI1 protein degradation through deubiquitination, which enhances PD-L1 transcription. Functionally, PD-1 mAb treatment reinforces the efficacy of Prdm1-overexpressing HCC immune-competent mouse models. Collectively, we demonstrate that the PRDM1-USP22-SPI1 axis regulates PD-L1 levels, resulting in infiltrated CD8+ T cell exhaustion. Furthermore, PRDM1 overexpression combined with PD-(L)1 mAb treatment provides a therapeutic strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Evasão da Resposta Imune , Linfócitos T CD8-Positivos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo
6.
Cell Immunol ; 380: 104594, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36081178

RESUMO

Antibody secreting plasma cell plays an indispensable role in humoral immunity. As activated B cell undergoes germinal center reaction and develops into plasma cell, it gradually loses B cell characteristics and embraces functional changes associated with immunoglobulins production. Differentiation of B cell into plasma cell involves drastic changes in cell structure, granularity, metabolism, gene expression and epigenetic regulation that couple with the mounting capacity for synthesis of a large quantity of antigen-specific antibodies. The interplay between three hallmark transcriptional regulators IRF4, BLIMP1, and XBP1, is critical for supporting the cellular reprograming activities during B to plasma cell transition. IRF4 promotes plasma cell generation by directing immunoglobulin class switching, proliferation and survival; BLIMP1 serves as a transcriptional repressor that extinguishes B cell features; whereas XBP1 controls unfolded protein response that relieves endoplasmic reticulum stress and permits antibody release during terminal differentiation. Intriguingly, high expression of IRF4, BLIMP1, and XBP1 molecules have been reported in myeloma cells derived from multiple myeloma patients, which negatively impact treatment outcome, prognosis, and relapse frequency. Despite the introduction of immunomodulatory drugs in recent years, multiple myeloma is still an incurable disease with poor survival rate. An in-depth review of IRF4, BLIMP1, and XBP1 triad molecules in plasma cell generation and multiple myeloma tumorigenesis may provide clues to the possibility of targeting these molecules in disease management.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Mieloma Múltiplo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Linfócitos B , Diferenciação Celular , Epigênese Genética , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Recidiva Local de Neoplasia , Plasmócitos
7.
Nature ; 607(7920): 808-815, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794478

RESUMO

Diffuse large B cell lymphoma (DLBCL) is the most common B cell non-Hodgkin lymphoma and remains incurable in around 40% of patients. Efforts to sequence the coding genome identified several genes and pathways that are altered in this disease, including potential therapeutic targets1-5. However, the non-coding genome of DLBCL remains largely unexplored. Here we show that active super-enhancers are highly and specifically hypermutated in 92% of samples from individuals with DLBCL, display signatures of activation-induced cytidine deaminase activity, and are linked to genes that encode B cell developmental regulators and oncogenes. As evidence of oncogenic relevance, we show that the hypermutated super-enhancers linked to the BCL6, BCL2 and CXCR4 proto-oncogenes prevent the binding and transcriptional downregulation of the corresponding target gene by transcriptional repressors, including BLIMP1 (targeting BCL6) and the steroid receptor NR3C1 (targeting BCL2 and CXCR4). Genetic correction of selected mutations restored repressor DNA binding, downregulated target gene expression and led to the counter-selection of cells containing corrected alleles, indicating an oncogenic dependency on the super-enhancer mutations. This pervasive super-enhancer mutational mechanism reveals a major set of genetic lesions deregulating gene expression, which expands the involvement of known oncogenes in DLBCL pathogenesis and identifies new deregulated gene targets of therapeutic relevance.


Assuntos
Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B , Mutação , Oncogenes , Regulação para Baixo , Elementos Facilitadores Genéticos/genética , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Oncogenes/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Receptores CXCR4/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Repressoras/metabolismo
8.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887169

RESUMO

Osteoporosis is a common bone disease, particularly in menopausal women. Herein, we screened four Kampo medicines (Unkeito (UKT), Kamishoyosan (KSS), Kamikihito (KKT), and Ninjinyoeito (NYT)), frequently used to treat menopausal syndromes, for their effects on receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation in RAW 264 cells. Considering that UKT exhibited the most potent effect, we examined its effect on RANKL-induced osteoclastogenesis, the induction of osteoclast apoptosis, and the mechanisms underlying its effects. UKT inhibits RANKL-induced osteoclast differentiation in the early stage and decreases osteoclast-related genes, including tartrate-resistant acid phosphatase (Trap), dendritic cell-specific transmembrane protein (Dcstamp), matrix metalloproteinase-9 (Mmp9), and cathepsin K (Ctsk). Specifically, UKT inhibits the nuclear factor of activated T cells 1 (NFATc1), which is essential for osteoclastogenesis. UKT increases Bcl6, which antagonizes NFATc1 and Dc-stamp, thereby blocking the progression of osteoclasts to maturation. UKT also decreased nuclear translocation by downregulating the activity of p65/NF-κB. In addition, UKT enhances mononuclear osteoclast apoptosis via activation of caspase-3. Herein, we demonstrate that UKT suppresses RANKL-mediated osteoclastogenesis via the Blimp1-Bcl6 and NF-κB signaling pathways and enhances mononuclear osteoclast apoptosis. Furthermore, UKT prevents bone loss in OVX mice. Thus, UKT might be a potential therapeutic agent for postmenopausal osteoporosis.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Apoptose , Reabsorção Óssea/metabolismo , Diferenciação Celular , Feminino , Humanos , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteogênese , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6 , Ligante RANK/metabolismo , Ligante RANK/farmacologia , Transdução de Sinais
9.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35029669

RESUMO

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that OVOL2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) that drives gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and, consequently, induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation. This article has an associated 'The people behind the papers' interview.


Assuntos
Desenvolvimento Embrionário/genética , Gastrulação/genética , Células Germinativas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem da Célula , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Células Germinativas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Regulação para Cima , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
10.
Front Immunol ; 13: 859598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618345

RESUMO

Antibody secretion by plasma cells provides acute and long-term protection against pathogens. The high secretion potential of plasma cells depends on the unfolded protein response, which is controlled by the transcription factor Xbp1. Here, we analyzed the Xbp1-dependent gene expression program of plasma cells and identified Bhlha15 (Mist1) as the most strongly activated Xbp1 target gene. As Mist1 plays an important role in other secretory cell types, we analyzed in detail the phenotype of Mist1-deficient plasma cells in Cd23-Cre Bhlha15 fl/fl mice under steady-state condition or upon NP-KLH immunization. Under both conditions, Mist1-deficient plasma cells were 1.4-fold reduced in number and exhibited increased IgM production and antibody secretion compared to control plasma cells. At the molecular level, Mist1 regulated a largely different set of target genes compared with Xbp1. Notably, expression of the Blimp1 protein, which is known to activate immunoglobulin gene expression and to contribute to antibody secretion, was 1.3-fold upregulated in Mist1-deficient plasma cells, which led to a moderate downregulation of most Blimp1-repressed target genes in the absence of Mist1. Importantly, a 2-fold reduction of Blimp1 (Prdm1) expression was sufficient to restore the cell number and antibody expression of plasma cells in Prdm1 Gfp/+ Cd23-Cre Bhlha15 fl/fl mice to the same level seen in control mice. Together, these data indicate that Mist1 restricts antibody secretion by restraining Blimp1 expression, which likely contributes to the viability of plasma cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Plasmócitos , Fator 1 de Ligação ao Domínio I Regulador Positivo , Animais , Camundongos , Anticorpos/metabolismo , Regulação da Expressão Gênica , Plasmócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
11.
Mol Cancer Res ; 20(4): 650-660, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907035

RESUMO

Lymphocyte infiltration is an important feature of cancer. There is a complex network of chemokines that influence the degree and phenotype of lymphocyte infiltration, as well as the growth, survival, migration, and angiogenesis of tumor cells. High heterogeneity metastasis is a major obstacle to the treatment of breast cancer. Herein, we showed that O-GlcNAcylation of B lymphocyte-induced maturation protein-1 (Blimp-1) in lymphocytes inhibited the migration and invasion of breast cancer cells. It was found that Blimp-1 O-GlcNAcylation at Ser448 and Ser472 in lymphocytes promoted its nuclear localization, and blocked the bindings to three regions upstream of the ccl3l1 promoter to inhibit its expression. Decreased expression of CCL3L1 in lymphocytes not only decreased CCR5 expression in breast cancer cells, but also inhibited the membrane localization and activation of CCR5, thus blocking the migration and invasion of breast cancer cells in vitro. Therefore, O-GlcNAcylation of Blimp-1 in lymphocytes may serve as a new target for the treatment of metastatic breast cancer. IMPLICATIONS: This study reveals a new mechanism by which the lymphatic system promotes breast cancer cell metastasis.


Assuntos
Neoplasias da Mama , Linfócitos , Fator 1 de Ligação ao Domínio I Regulador Positivo , Neoplasias da Mama/patologia , Feminino , Humanos , Linfócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Regiões Promotoras Genéticas
12.
J Immunol ; 208(2): 501-513, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911774

RESUMO

Protein arginine methyltransferase 5 (PRMT5) participates in the symmetric dimethylation of arginine residues of proteins and contributes to a wide range of biological processes. However, how PRMT5 affects the transcriptional and epigenetic programs involved in the establishment and maintenance of T cell subset differentiation and roles in antitumor immunity is still incompletely understood. In this study, using single-cell RNA and chromatin immunoprecipitation sequencing, we found that mouse T cell-specific deletion of PRMT5 had greater effects on CD8+ than CD4+ T cell development, enforcing CD8+ T cell differentiation into Klrg1+ terminal effector cells. Mechanistically, T cell deficiency of PRMT5 activated Prdm1 by decreasing H4R3me2s and H3R8me2s deposition on its loci, which promoted the differentiation of Klrg1+CD8+ T cells. Furthermore, effector CD8+ T cells that transited to memory precursor cells were decreased in PRMT5-deficient T cells, thus causing dramatic CD8+ T cell death. In addition, in a mouse lung cancer cell line-transplanted tumor mouse model, the percentage of CD8+ T cells from T cell-specific deletion of PRMT5 mice was dramatically lost, but CD8+Foxp3+ and CD8+PDL1+ regulatory T cells were increased compared with the control group, thus accelerating tumor progression. We further verified these results in a mouse colon cancer cell line-transplanted tumor mouse model. Our study validated the importance of targeting PRMT5 in tumor treatment, because PRMT5 deficiency enforced Klrg1+ terminal CD8+ T cell development and eliminated antitumor activity.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Carcinogênese/genética , Lectinas Tipo C/metabolismo , Proteína-Arginina N-Metiltransferases/deficiência , Receptores Imunológicos/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Hematopoese/fisiologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Ativação Linfocitária/imunologia , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteína-Arginina N-Metiltransferases/genética , RNA-Seq , Transdução de Sinais/genética , Análise de Célula Única
13.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34792530

RESUMO

During the immune response, CD4+ T cells differentiate into distinct effector subtypes, including follicular helper T (Tfh) cells that help B cells, and into memory cells. Tfh and memory cells are required for long-term immunity; both depend on the transcription factor Bcl6, raising the question whether they differentiate through similar mechanisms. Here, using single-cell RNA and ATAC sequencing, we show that virus-responding CD4+ T cells lacking both Bcl6 and Blimp1 can differentiate into cells with transcriptomic, chromatin accessibility, and functional attributes of memory cells but not of Tfh cells. Thus, Bcl6 promotes memory cell differentiation primarily through its repression of Blimp1. These findings demonstrate that distinct mechanisms underpin the differentiation of memory and Tfh CD4+ cells and define the Bcl6-Blimp1 axis as a potential target for promoting long-term memory T cell differentiation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Células T de Memória/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Células T Auxiliares Foliculares/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Perfilação da Expressão Gênica/métodos , Células T de Memória/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA-Seq/métodos , Análise de Célula Única/métodos , Células T Auxiliares Foliculares/metabolismo
14.
Biotechnol Bioeng ; 119(2): 550-565, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821376

RESUMO

Environmental growth-inhibition conditions (GICs) have been used extensively for increasing cell-specific productivity (qP ) of Chinese hamster ovary (CHO) cells, with the most common being temperature downshift and sodium butyrate (NaBu) treatment. B lymphocyte-induced maturation protein-1 (BLIMP1) overexpression in CHO cells can also inhibit cell growth and increase product titers and qP . Given the similar responses, this study evaluated the individual and combined effects of BLIMP1 expression, low temperature, and NaBu treatment on culture performance, cell metabolism, and recombinant protein production of CHO cells. As expected, all three interventions decreased cell growth, arrested cells in G1/G0 cell cycle phase, and increased qP . However, CHO cells presented different responses when considering cell viability, recombinant gene expression, and cell metabolism that indicated differences in the molecular loci by which BLIMP1 and GICs generated higher productivities. Combinations of BLIMP1 expression and GICs acted synergistically to inhibit cell growth and maximize r-protein production, with the BLIMP1/NaBu condition leading to the most significant improvements in product titers and qP . This latter condition also proved to substantially increase product yields (up to 9.8 g immunoglobulin G1 [IgG1]/L and 2.2 g erythropoietin-Fc [EPO-Fc]/L) and qP (up to 179 pg/cell/day [pcd] for IgG1 and 30 pcd for EPO-Fc) in high-density perfusion cultures. These findings offered mechanistic insights about the productivity-enhancing effects of BLIMP1 and GICs, as well as their complementarity for generating highly productive processes.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Engenharia Celular/métodos , Proteínas Recombinantes , Animais , Ácido Butírico/química , Células CHO , Proliferação de Células/genética , Sobrevivência Celular , Cricetinae , Cricetulus , Meios de Cultura , Metabolômica/métodos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Chemotherapy ; 67(1): 12-23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34844236

RESUMO

INTRODUCTION: The chemoresistance mechanism of diffuse large B-cell lymphoma (DLBCL) is still poorly understood, and patient prognosis remains unsatisfactory. This study aimed to investigate drug resistance mechanisms in non-germinal center B-cell-like (non-GCB) DLBCL. METHODS: Doxorubicin (DOX)-resistant OCI-Ly3 cells were generated through long-term incubation of cells in a medium with gradually increasing DOX concentrations. The expression levels of genes related to drug metabolism were determined using a functional gene grouping polymerase chain reaction (PCR) array. Drug-resistant proteins were identified using bioinformatics, and molecular association networks were subsequently generated. The association and mechanism of key genes were determined using a dual-luciferase reporter assay System and chromatin immunoprecipitation (ChIP). The expression of drug-resistant genes and target genes was then measured using Western blotting and immunohistochemistry. The correlation between gene expressions was analyzed using Spearman's rank correlation coefficient. RESULTS: Using the PCR array, MDR1 was identified as the key gene that regulates DOX resistance in OCI-Ly3/DOX-A100, a non-GCB DLBCL cell line. The dual-luciferase reporter assay system demonstrated that MDR1 transcription could be inhibited by PRDM1. ChIP results showed that PRDM1 had the ability to bind to the promoter region (-1,132 to -996) of MDR1. In OCI-Ly3/DOX cells, NF-κB activity and PRDM1 expression decreased with an increase in drug-resistant index, whereas MDR1 expression increased with enhanced drug resistance. Immunohistochemical analysis revealed that relative MDR1 expression was higher than that of PRDM1 in human DLBCL tissue samples. A negative correlation was observed between MDR1 and PRDM1. CONCLUSION: In non-GCB DLBCL cells, NF-κB downregulates PRDM1 and thereby promotes MDR1 transcription by terminating PRDM1-induced transcriptional inhibition of MDR1. Such a mechanism may explain the reason for disease recurrence in non-GCB DLBCL after R-CHOP or combined CHOP with bortezomib treatment. Our findings may provide a potential therapeutic strategy for reducing drug resistance in patients with DLBCL.


Assuntos
Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Regulação da Expressão Gênica , Linfoma Difuso de Grandes Células B , Recidiva Local de Neoplasia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Prognóstico , Rituximab/uso terapêutico
16.
Iran J Allergy Asthma Immunol ; 20(6): 700-710, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34920653

RESUMO

Common variable immunodeficiency (CVID) is the most prevalent form of symptomatic primary humoral immunodeficiencies characterized by failure in the final differentiation of B lymphocytes. The majority of CVID cases have no identified genetic defect, and epigenetic alteration could be involved in the pathogenesis of CVID. Hence, we aimed to evaluate the expression of hsa-miR-125b-5p -and, B lymphocyte-induced maturation protein-1(BLIMP-1) and interferon regulatory protein-4 (IRF-4) in a group of CVID patients with no definitive genetic diagnosis in comparison with healthy individuals. Ten CVID patients (all known genes excluded) and 10 age and sex-matched healthy controls participated in the study. B lymphocytes were isolated and expression of miR-125b-5p, IRF4, and BLIMP1 were evaluated by real-time polymerase chain reaction (RT-PCR). Moreover, B cell subsets were analyzed by flow cytometry. The results showed that the relative expression of miR-125b-5p in CVID patients was increased while it was decreased for the BLIMP1 and IRF4 transcription factors compared with the healthy controls. Although a reduction was observed in switched and non-switched memory B cells among all high-miR patients, these subsets were decreased in patients with normal miR expression (71.0% and 85.0%, respectively). Our results suggest that overexpression of miR-125b-5p affects the terminal differentiation of B cells in a selected group of CVID patients by downregulating the BLIMP-1 gene and more intensively for the IRF-4 gene expressions.


Assuntos
Imunodeficiência de Variável Comum/genética , Fatores Reguladores de Interferon/genética , MicroRNAs/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Regulação para Baixo , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/metabolismo , Masculino , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Regulação para Cima
17.
Cell Rep ; 37(9): 110048, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34852224

RESUMO

Intraluminal lymphatic valves (LVs) contribute to the prevention of lymph backflow and maintain circulatory homeostasis. Several reports have investigated the molecular mechanisms which promote LV formation; however, the way in which they are suppressed is not completely clear. We show that the forkhead transcription factor FOXO1 is a suppressor of LV formation and maintenance in lymphatic endothelial cells. Oscillatory shear stress by bidirectional flow inactivates FOXO1 via Akt phosphorylation, resulting in the upregulation of a subset of LV-specific genes mediated by downregulation of a transcriptional repressor, PRDM1. Mice with an endothelial-specific Foxo1 deletion have an increase in LVs, and overexpression of Foxo1 in mice produces a decrease in LVs. Genetic reduction of PRDM1 rescues the decrease in LV by Foxo1 overexpression. In conclusion, FOXO1 plays a critical role in lymph flow homeostasis by preventing excess LV formation. This gene might be a therapeutic target for lymphatic circulatory abnormalities.


Assuntos
Proteína Forkhead Box O1/fisiologia , Linfangiogênese , Vasos Linfáticos/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Animais , Feminino , Humanos , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Transdução de Sinais
18.
Nutrients ; 13(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959764

RESUMO

We previously found increases in uncoupling protein (Ucp)-1 transcription in brown adipose tissue (BAT) of mice following a single oral dose of flavan 3-ol (FL)s, a fraction of catechins and procyanidins. It was confirmed that these changes were totally reduced by co-treatment of adrenaline blockers. According to these previous results, FLs possibly activate sympathetic nervous system (SNS). In this study, we confirmed the marked increase in urinary catecholamine (CA) s projecting SNS activity following a single dose of 50 mg/kg FLs. In addition, we examined the impact of the repeated administration of 50 mg/kg FLs for 14 days on adipose tissues in mice. In BAT, FLs tended to increase the level of Ucp-1 along with significant increase of thermogenic transcriptome factors expressions, such as peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and PR domain-containing (PRDM)1. Expression of browning markers, CD137 and transmembrane protein (TMEM) 26, in addition to PGC-1α were increased in epididymal adipose (eWAT) by FLs. A multilocular morphology with cell size reduction was shown in the inguinal adipose (iWAT), together with increasing the level of Ucp-1 by FLs. These results exert that FLs induce browning in adipose, and this change is possibly produced by the activation of the SNS.


Assuntos
Tecido Adiposo/metabolismo , Flavonoides/administração & dosagem , Sistema Nervoso Simpático/efeitos dos fármacos , Administração Oral , Animais , Catecolaminas/urina , Proteínas de Membrana/metabolismo , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Termogênese/efeitos dos fármacos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Proteína Desacopladora 1/metabolismo
19.
Mol Cancer ; 20(1): 150, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34798898

RESUMO

BACKGROUND: Accumulation of Foxp3+ regulatory T (Treg) cells in the tumor often represents an important mechanism for cancer immune evasion and a critical barrier to anti-tumor immunity and immunotherapy. Many tumor-infiltrating Treg cells display an activated phenotype and express the transcription factor Blimp1. However, the specific impact of these Blimp1+ Treg cells and their follicular regulatory T (TFR) cell subset on tumor and the underlying mechanisms of action are not yet well-explored. METHODS: Various transplantable tumor models were established in immunocompetent wild-type mice and mice with a Foxp3-specific ablation of Blimp1. Tumor specimens from patients with metastatic melanoma and TCGA datasets were analyzed to support the potential role of Treg and TFR cells in tumor immunity. In vitro culture assays and in vivo adoptive transfer assays were used to understand how Treg, TFR cells and antibody responses influence tumor control. RNA sequencing and NanoString analysis were performed to reveal the transcriptome of tumor-infiltrating Treg cells and tumor cells, respectively. Finally, the therapeutic effects of anti-PD-1 treatment combined with the disruption of Blimp1+ Treg activity were evaluated. RESULTS: Blimp1+ Treg and TFR cells were enriched in the tumors, and higher tumoral TFR signatures indicated increased risk of melanoma metastasis. Deletion of Blimp1 in Treg cells resulted in impaired suppressive activity and a reprogramming into effector T-cells, which were largely restricted to the tumor-infiltrating Treg population. This destabilization combined with increased anti-tumor effector cellular responses, follicular helper T-cell expansion, enhanced tumoral IgE deposition and activation of macrophages secondary to dysregulated TFR cells, remodeled the tumor microenvironment and delayed tumor growth. The increased tumor immunogenicity with MHC upregulation improved response to anti-PD-1 blockade. Mechanistically, Blimp1 enforced intratumoral Treg cells with a unique transcriptional program dependent on Eomesodermin (Eomes) expression; deletion of Eomes in Blimp1-deficient Treg cells restored tumor growth and attenuated anti-tumor immunity. CONCLUSIONS: These findings revealed Blimp1 as a new critical regulator of tumor-infiltrating Treg cells and a potential target for modulating Treg activity to treat cancer. Our study has also revealed two FCERIA-containing immune signatures as promising diagnostic or prognostic markers for melanoma patients.


Assuntos
Neoplasias/etiologia , Neoplasias/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Imunofluorescência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade Humoral/genética , Imunomodulação/efeitos dos fármacos , Imunofenotipagem , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Melanoma Experimental , Camundongos , Camundongos Knockout , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Transcriptoma , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos
20.
PLoS One ; 16(10): e0258427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653201

RESUMO

The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human pluripotent stem cells (PSCs), PGCs and spermatogonia, but little is known about its specific role concerning pluripotency and human germline development. Here we use CRISPR/Cas mediated knockout and PGC-like cell (PGCLC) differentiation in human iPSCs to determine if DND1 (1) plays a role in maintaining pluripotency and (2) in specification of PGCLCs. We generated several clonal lines carrying biallelic loss of function mutations and analysed their differentiation potential towards PGCLCs and their gene expression on RNA and protein levels via RNA sequencing and mass spectrometry. The generated knockout iPSCs showed no differences in pluripotency gene expression, proliferation, or trilineage differentiation potential, but yielded reduced numbers of PGCLCs as compared with their parental iPSCs. RNAseq analysis of mutated PGCLCs revealed that the overall gene expression remains like non-mutated PGCLCs. However, reduced expression of genes associated with PGC differentiation and maintenance (e.g., NANOS3, PRDM1) was observed. Together, we show that DND1 iPSCs maintain their pluripotency but exhibit a reduced differentiation to PGCLCs. This versatile model will allow further analysis of the specific mechanisms by which DND1 influences PGC differentiation and maintenance.


Assuntos
Células Germinativas/metabolismo , Proteínas de Neoplasias/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Edição de Genes , Expressão Gênica , Células Germinativas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Neoplasias/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Análise de Componente Principal , RNA/química , RNA/genética , RNA/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...